

Investigation of a partitioned cavity silencer using a woven metal screen as acoustic liner and sound absorber

April 10th, 2019

Exhaust Engineering

Overview

- Demo
- Working principle
- Silencer model
 - Material measurements
 - 1D Model derivation
- Comparisons with FEM (transmission loss)
- Comparison with measurements (insertion loss)
- Conclusions
- Questions

Demo...

Demo...

Overall A-weighted level difference: 28 dB

Working principle

Working principle

- Liner: pores which are small compared to viscothermal diffusion layer thickness $\delta = \sqrt{\frac{2\mu}{\rho_0 \omega}}$
 - Viscothermal dissipation in the liner material
 - Back cavity function is allowing

- Liner: woven stainless steel
 - Porosity ~ 1%
 - Pore size ~ 0,07 mm
 - Thickness ~ 1 mm

Silencer model Material measurements

Impedance tube UT
 Sample

Impedance tube

Mics

acoustics | software | consultancy | engineering | education

Terminatio

ASCEE

Real part of normalized impedance

acoustics | software | consultancy | engineering | education

9/24/19

Imaginary part of normalized impedance

Material model

• Linear empirical fit:

$$\zeta(\omega) = 1 + i \frac{\omega/2\pi}{2000}$$

- More advanced models:
 - Johnson-Champoux-Allard
 - Micro-perforated plates
- End result for silencer not really sensitive to variations in zeta.

acoustics | software | consultancy | engineering | education

14

Silencer model 1D model

- Assumptions
 - Linear, isentropic acoustics in cavity and main passage
 - Cavity transverse size is small compared to the wavelength:
 - Axial propagation of waves in the main passage and back cavity is allowed $r_o \ll \lambda$
 - The liner wall thickness is small compared to the wavelength
 - Liner effect can be modeled as a lumped impedance jump
 - Velocity reacts locally to pressure difference across liner (not locally reacting liner impedance!)

- Continuity equation for the cavity: $\frac{i\omega S_c}{c_0^2}p_c + S_c\rho_0 \frac{\mathrm{d}u_c}{\mathrm{d}x} = \Pi \rho_0 u_r$
- Continuity equation for the main channel:

$$\frac{i\omega S_i}{c_0^2}p_i + S_i\rho_0\frac{\mathrm{d}u_i}{\mathrm{d}x} = -\Pi\rho_0 u_r$$

• Cavity – inner duct communication:

$$z_{\rm liner}u_r(x)=p_i(x)-p_c(x)$$

- Momentum equation for the cavity: $u_c = \frac{i}{kz_0} \frac{\mathrm{d}p_c}{\mathrm{d}x}$
- Momentum equation for main channel: $u_i = \frac{i}{kz_0} \frac{\mathrm{d}p_i}{\mathrm{d}x}$

. . . 1

1D Silencer model

• Combined:

 Coupled set of ODE's for pressure in back cavity and in main passage

- Solution procedure:
 - Ansatz for back cavity solution: *p*_d

$$_{c} = \sum_{n=0}^{\infty} C_{n} \cos\left(\frac{n\pi}{L_{c}}x\right)$$

- Substitution for p_c in ODE for p_i,
- Substitution of result for p_i in terms of p_c back into ODE for p_i
- Integrations along the length of the back cavity
 - Using orthogonality relations of the cosines with different spatial frequencies
- Tedious....

- Solution:
 - Transfer matrix relation between pressure and velocity on one side of the liner, to the other side:

Partitioned cavity silencer

acoustics software consultancy engineering education

9/24/19

Transmission loss – comparison FEM

- ¹/₄ th of the geometry (could be 2D axisymetric)
- Overly fine mesh

acoustics | software | consultancy | engineering | education

9/24/19

Transmission loss – comparison FEM

• Vertical line: cut-on frequency

acoustics | software | consultancy | engineering | education

9/24/19

24

ASCEE Insertion loss measurements

ASCEE Comparison of insertion loss

acoustics software consultancy engineering education

9/24/19

Conclusions

- Numerical model for a partitioned cavity silencer is implemented, based on the Sullivan-Crocker model
- Implementation is verified using a comparison of the transmission loss with FEM results
- The model is validated using experimental measurements

9/24/19

The end

References

- Sullivan, J. W., and Crocker, M. J. (1978). "Analysis of concentric-tube resonators having unpartitioned cavities," The Journal of the Acoustical Society of America 64, 207–215.
- De Jong, J. A. (2015-2019). LRFTubes A Python code for computing 1D viscothermal acoustic waves in waveguides, https://code.ascee.nl/ASCEE/Irftubes
- https://fenicsproject.org

