Faster Thermoviscous Acoustic Simulations For Micro-Acoustics

Dr.ir. Anne de Jong

October 25, 2023

Nikola Teslastraat 1-11 | 7442 PC | Nijverdal | The Netherlands www.ascee.nl | info@ascee.nl

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 2 / 21

Thermoviscous acoustics

- Many devices related to hearing and sound contain narrow ducts for propagating sound to/from the ear. I.e:
	- \blacktriangleright Hearing aids
	- \blacktriangleright Earbuds
	- ▶ Hearing protection
- These narrow ducts introduce thermoviscous damping of acoustic waves.
- These effects need to be taken into account in the modeling.
	- \triangleright COMSOL Thermoviscous Acoustics Physics Interface $=$ numerically expensive ▶ Other methods
		- [⋆] Boundary Layer Impedance *⇒* only for wide geometries
		- [⋆] Narrow Region Acoustics *⇒* only for prismatic geometries

01481421421 2 990 Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations Coustic Simulations Coupler 25, 2023 3 / 21

Thermoviscous acoustics

43

1 Introduction

² Derivation (short version)

³ COMSOL implementation, and verification

⁴ Conclusions

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 5 / 21

Governing equations

- Start with, a Newtonian ideal gas, the governing equations are continuity, momentum and the energy equation, closed with the ideal gas equation of state. No external forces, heat sources and negligible gravity.
- Assume small perturbation in time harmonic form. No mean flow, uniform mean temperature and pressure. Then one ends with the Linearized Navier Stokes equations:

where:

- **u**: Acoustic velocity phasor [m/s]
- ρ : Acoustic density phasor $\left[\text{kg}/\text{m}^3\right]$
- *i*: *√ −*1, *ω*: Radian frequency [rad/s]
- *p*: Acoustic pressure phasor [Pa]
- **a** c_p : Specific heat at constant pressure [J/kgK]
- **•** T: Acoustic temperature phasor [K]
- *κ*: Thermal conductivity [W/mK]
- *T*0, *p*0, *ρ*0: Mean values in the field of above described quantities.
- And:

τ = $\mu \nabla^2 u + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u})$

.∨here: *μ*: dynamic viscosity [Pa·s], *λ*: Second viscosity [Pa·s]. ⊘α⊙

Anne de Jong Faster Thermoviscous Acoustic Simulations Control of Case of Acoustic Simulations Control of Acoustic Simulations Control of Acoustic Simulations Control of Acoustic Simulations Control of Acoustic Simulations

Further simplifications (1/2)

- To further derive the model, some simplifications are required. The justification of these assumptions is described in detail by R. Kampinga [2, 3, 1]. It is based on a order-of-magnitude analysis and some further assumptions generally applicable in micro-acoustic geometries.
- Apply the following assumptions:
	- ▶ The divergence of the velocity field is much smaller than typical single gradients of the velocity field.
	- ▶ On the scale of viscothermal boundary gradients, the acoustic pressure is more/less constant.
- Then, we can write for the momentum equation:

$$
\mathbf{u} = \frac{i}{\omega \rho_0} \left(1 - h_{\nu} \right) \nabla p, \tag{5}
$$

where *h^ν* satisfies:

$$
\nabla^2 h_\nu + \frac{2i}{\delta_\nu^2} h_\nu = 0, \tag{6}
$$

and is defined as the "viscous field", where:

$$
\delta_{\nu}^{2} = \frac{2\mu}{\rho_{0}\omega} \tag{7}
$$

Close to a wall, *h^ν →* 1, such that the velocity does not follow the pressure gradient anymore. Far from a wall, $h_{\nu} \rightarrow 0$, such that the inviscid case is retrieved back.

Further simplifications (2/2)

Apply the following assumption to the energy equation:

▶ On the scale of viscothermal boundary gradients, the acoustic pressure is more/less constant.

 \bullet Then, we can write for the energy equation:

$$
T = \frac{p}{\rho_0 c_p} \left(1 - h_\kappa \right) \tag{8}
$$

where *h^κ* satisfies:

$$
\nabla^2 h_{\kappa} + \frac{2i}{\delta_{\kappa}^2} h_{\kappa} = 0, \tag{9}
$$

and is defined as the "thermal field", where:

$$
\delta_{\kappa}^{2} = \frac{2\kappa}{\rho_{0}\epsilon_{p}\omega} \tag{10}
$$

Close to a wall, *h^κ →* 1, such that the temperature oscillation goes to 0. Far from a wall, *h^κ →* 0, such that the temperature oscillation responds adiabatically to a pressure oscillation.

- Eliminate the density by using the equation of state.
- Fill in for the momentum equation in *u*
- Fill in for the temperature the heat equation
- The we find:

$$
\nabla \cdot \left(\left(1 - h_{\nu}\right) \nabla p \right) + k^2 \left(1 + \left(\gamma - 1\right) h_{\kappa}\right) p = 0, \tag{11}
$$

where:

and

$$
\gamma = c_p \left(c_p - R_s \right),\tag{12}
$$

the ratio of specific heats.

This is an "almost"-Helmholtz equation that can be solved in the same way as the inviscid Helmholtz is already solved in the current "Pressure Acoustics" physics interface.

 $k = \omega/c_0$,

 $\ddot{\mathcal{C}}$

1 Introduction

² Derivation (short version)

³ COMSOL implementation, and verification

⁴ Conclusions

68

Propagating wave in infinite duct

- Start with something we know a solution of, before exploring the unknown.
- This is a square duct. Length 1 m, cross section 1x1 mm.
- ▶ These dimensions are such small, that wave damping will lower the amplitude.
- The figure below shows the mesh. Note that boundary layers are required when solving with SLNS.

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations Coustic Simulations Coupler 25, 2023 11/21

17

Model setup - *h^κ*

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 13 / 21

Implementing the adjusted Helmholtz equation for the acoustic pressure

Adjusted Helmholtz equation incorporating viscous and thermal fields:

$$
\nabla \cdot \left(\left(1 - h_{\nu}\right) \nabla p \right) + k^2 \left(1 + \left(\gamma - 1\right) h_{\kappa}\right) p = 0. \tag{15}
$$

- We tried to implement this as COMSOL-compatible as possible. So instead of creating a new "General PDE". We tweaked the pressure acoustic interface with a weak contribution.
- It means, splitting up the existing pressure acoustics terms, from the new ones and only adding the new ones. \blacktriangleright Be careful with signs!

Solver configuration

- To force COMSOL solving this problem sequentially, there are multiple options:
	- **4** Create separate study steps, in which each of the field is solved, and the use the result of the viscous and termal fields as "Values of variables not solved for".
	- 2 Replace the default "Fully coupled" solver with a segregated solver. Configure the segregated solver to apply only a single step for all the fields (as it is a sequentially and linear problem).
- \bullet Here, we choose option 2.

ency Don

omiguración
ion 1 *(sol 1)*
impile Equat

Hnu eq

General

 $= 4$

Linear solver: Direct Matrix format: Aut

Damping factor:

Number of iterations: $\overline{1}$ Changes from Default Settings

- Method and Termination Nonlinear method:

Constant (Newton

 \overline{A}

Update automatic scale factors in weigh

On every date:

 $\overline{}$ \checkmark

 $\overline{}$

 $\overline{}$

 $\ddot{}$

Verification - result comparison (2/2)

- As visible, these models predict exactly the same pressure field.
- **•** There is also an analytical solution for this case: ▶

01481421421 2 990 Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations Coustic Simulations Coupler 25, 2023 17 / 21

- Now we focus on a case were an exact solution is not available: the computation of the equivalent series impedance of a micro-perforate. The figure at the bottom shows a typical "unit cell", of a square pattern micro-perforate with circular holes. We solve this model for 20 frequencies. To reduce the number of DOFS, the symmetry allows to solve for 1/8 of the actual unit cell.
- We show results of wall clock time, as they count for us. There were no other tasks running on the machine.

- We use the following machine:
- Intel Xeon Silver 4214, 24 cores, 130 GiB RAM.
- **•** The used solver is Pardiso.
- The number of DOFS is:
	- ▶ Pressure acoustics: 20,853 (Quadratic Lagrange)
		- ▶ Thermoviscous acoustics: 359,116 (Linear pressure, Quadratic Serendipity T, *u*)
- The table on the right shows the computation times for 20 frequencies.
- There are some other ways of gaining speedups: ▶ Frequency-dependent mesh size
	- ▶ Decreasing the order of the shape functions (and increasing the mesh size locally where required).

Thermoviscous acoustics

Wall clock time 16m18s 1m50s Speedup 1.0 9.2

SLNS

² Derivation (short version)

³ COMSOL implementation, and verification

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 20 / 21

- In this presentation we showed and derived the Sequentially Linearized Navier Stokes (SLNS) model, and the way it can be implemented in COMSOL.
- We have verified the correct implementation in COMSOL, and have showed that it is able to reach significant speedups for practical computations in micro-acoustics.
- Want to know more?
	- ▶ E: j.a.dejong@ascee.nl
		- \blacktriangleright T: +31 6 189 71 622
- Here are some references:
- [1] W. Kampinga. "Viscothermal acoustics using finite elements: analysis tools for engineers." PhD thesis. Enschede, The Netherlands: University of Twente, 2010.
- [2] W. Kampinga, Y. Wijnant, and A. de Boer. "An Efficient Finite Element Model for Viscothermal Acoustics." In: *Acta Acustica united with Acustica* 97.4 (2011), pp. 618–631.
- [3] W. Kampinga, Y. Wijnant, and A. de Boer. "Performance of Several Viscothermal Acoustic Finite Elements." In: *Acta Acustica united with Acustica* 96.1 (2010), pp. 115–124.

