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Thermoviscous acoustics

Viscothermal boundary layer

Transverse velocity profile

δ

Acoustic wavespL, UL

x

L

Sf pR, UR

Many devices related to hearing and sound contain narrow ducts for propagating
sound to/from the ear. I.e:

▶ Hearing aids
▶ Earbuds
▶ Hearing protection

These narrow ducts introduce thermoviscous damping of acoustic waves.
These effects need to be taken into account in the modeling.

▶ COMSOL Thermoviscous Acoustics Physics Interface = numerically expensive
▶ Other methods

⋆ Boundary Layer Impedance ⇒ only for wide geometries
⋆ Narrow Region Acoustics ⇒ only for prismatic geometries
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Thermoviscous acoustics

Important parameters:
▶ Viscous penetration depth: δν

▶ Thermal penetration depth: δκ
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Governing equations

Start with, a Newtonian ideal gas, the governing equations are continuity, momentum and the energy equation, closed
with the ideal gas equation of state. No external forces, heat sources and negligible gravity.
Assume small perturbation in time harmonic form. No mean flow, uniform mean temperature and pressure. Then one
ends with the Linearized Navier Stokes equations:

iωρ+ ρ0∇ · u = 0 ⇐continuity, (1)
iωρ0u = −∇p +∇ · τ ⇐momentum, (2)

ρ0cpiωT = iωp + κ∇2T ⇐energy, (3)
p
p0

=
ρ

ρ0
+

T
T0

⇐state, (4)

where:

u: Acoustic velocity phasor [m/s]
ρ: Acoustic density phasor [kg/m3]
i:

√
−1, ω: Radian frequency [rad/s]

p: Acoustic pressure phasor [Pa]
cp: Specific heat at constant pressure
[J/kgK]

T: Acoustic temperature phasor [K]
κ: Thermal conductivity [W/mK]
T0, p0, ρ0: Mean values in the field of above described quantities.
And:

τ = µ∇2u + (λ+ µ)∇ (∇ · u)

Where: µ: dynamic viscosity [Pa·s], λ: Second viscosity [Pa·s].
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Further simplifications (1/2)

To further derive the model, some simplifications are required. The justification of these assumptions is described in
detail by R. Kampinga [2, 3, 1]. It is based on a order-of-magnitude analysis and some further assumptions generally
applicable in micro-acoustic geometries.
Apply the following assumptions:

▶ The divergence of the velocity field is much smaller than typical single gradients of the velocity field.
▶ On the scale of viscothermal boundary gradients, the acoustic pressure is more/less constant.

Then, we can write for the momentum equation:

u =
i

ωρ0
(1− hν)∇p, (5)

where hν satisfies:
∇2hν +

2i
δ2ν

hν = 0, (6)

and is defined as the “viscous field”, where:
δ2ν =

2µ

ρ0ω
(7)

Close to a wall, hν → 1, such that the velocity does not follow the pressure gradient anymore. Far from a wall,
hν → 0, such that the inviscid case is retrieved back.
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Further simplifications (2/2)

Apply the following assumption to the energy equation:
▶ On the scale of viscothermal boundary gradients, the acoustic pressure is more/less constant.

Then, we can write for the energy equation:
T =

p
ρ0cp

(1− hκ) (8)

where hκ satisfies:
∇2hκ +

2i
δ2κ

hκ = 0, (9)

and is defined as the “thermal field”, where:
δ2κ =

2κ

ρ0cpω
(10)

Close to a wall, hκ → 1, such that the temperature oscillation goes to 0. Far from a wall, hκ → 0, such that the
temperature oscillation responds adiabatically to a pressure oscillation.
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Last steps: viscothermal Helmholtz equation derivation

Eliminate the density by using the equation of state.
Fill in for the momentum equation in u
Fill in for the temperature the heat equation
The we find:

∇ · ((1− hν)∇p) + k2 (1 + (γ − 1) hκ) p = 0, (11)
where:

k = ω/c0,
and

γ = cp (cp − Rs) , (12)
the ratio of specific heats.
This is an “almost”-Helmholtz equation that can be solved in the same way as the inviscid Helmholtz is already solved
in the current “Pressure Acoustics” physics interface.

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 9 / 21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of Contents

1 Introduction

2 Derivation (short version)

3 COMSOL implementation, and verification

4 Conclusions

Dr.ir. Anne de Jong Faster Thermoviscous Acoustic Simulations October 25, 2023 10 / 21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Propagating wave in infinite duct

Start with something we know a solution of,
before exploring the unknown.
This is a square duct. Length 1 m, cross
section 1x1 mm.

▶ These dimensions are such small, that wave
damping will lower the amplitude.

The figure below shows the mesh. Note that
boundary layers are required when solving
with SLNS.
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Model setup - hν

Solve viscous field equation:
Helmholtz equation with a complex
“wave number”.

∇2hv +
2

iδ2ν
hv = 0, (13)

where:
▶ hν = 1 on a no-slip boundary

⋆ ∇ · hν · n = 0 on a symmetry
boundary

⋆ hν = 0 on an inlet/outlet, or boundary
where the acoustic normal velocity /
pressure is prescribed.

Implemented as “General form PDE”
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Model setup - hκ

Solve viscous field equation:
Helmholtz equation with a complex
“wave number”.

∇2hκ +
2

iδ2κ
hκ = 0, (14)

where:
▶ hκ = 1 on an isothermal boundary

⋆ ∇ · hκ · n = 0 on a symmetry
boundary

⋆ hκ = 0 on an inlet/outlet, or
boundary where the acoustic normal
velocity / pressure is prescribed.

Also implemented as “General form
PDE”
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Implementing the adjusted Helmholtz equation for the acoustic pressure

Adjusted Helmholtz equation incorporating viscous and thermal fields:

∇ · ((1− hν)∇p) + k2 (1 + (γ − 1) hκ) p = 0. (15)

We tried to implement this as COMSOL-compatible as possible. So instead of creating a new “General PDE”. We
tweaked the pressure acoustic interface with a weak contribution.
It means, splitting up the existing pressure acoustics terms, from the new ones and only adding the new ones.

▶ Be careful with signs!
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Solver configuration

To force COMSOL solving this
problem sequentially, there are
multiple options:

1 Create separate study steps, in which
each of the field is solved, and the use
the result of the viscous and termal
fields as “Values of variables not solved
for”.

2 Replace the default “Fully coupled”
solver with a segregated solver.
Configure the segregated solver to
apply only a single step for all the
fields (as it is a sequentially and linear
problem).

Here, we choose option 2.

The first method has as disadvantage that, when performing frequency sweeps, a solution for the viscous and thermal
fields needs to be picked correcty, i.e. for frequency x of the Helmholtz solution, also frequency x of the viscous and
thermal field solutions should be used. This method is therefore a bit more prone to errors.
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Verification - result comparison (1/2)

A simulation has been performed where we put a boundary condition of p = 1 Pa at the x = 0 inlet, and a “Sound
Hard Boundary” on all other sides:
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Verification - result comparison (2/2)

The figure on the right shows
the computed real part of the
area-averaged presssure in the
duct, for a frequency of 1 kHz.
As visible, these models predict
exactly the same pressure field.
There is also an analytical
solution for this case:

▶

p(x) = cos (Γ (L − x)) (16)
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Benchmark - more advanced case (1/2)

Now we focus on a case were an exact solution is not available: the computation of the equivalent series impedance of
a micro-perforate. The figure at the bottom shows a typical “unit cell”, of a square pattern micro-perforate with
circular holes. We solve this model for 20 frequencies. To reduce the number of DOFS, the symmetry allows to solve
for 1/8 of the actual unit cell.
We show results of wall clock time, as they count for us. There were no other tasks running on the machine.
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Benchmark - more advanced case (2/2)

We use the following machine:
Intel Xeon Silver 4214, 24 cores, 130 GiB RAM.
The used solver is Pardiso.
The number of DOFS is:

▶ Pressure acoustics: 20,853 (Quadratic Lagrange)
▶ Thermoviscous acoustics: 359,116 (Linear pressure,

Quadratic Serendipity T, u)

The table on the right shows the computation times for
20 frequencies.

Thermoviscous
acoustics

SLNS

Wall clock time 16m18s 1m50s
Speedup 1.0 9.2

There are some other ways of gaining speedups:
▶ Frequency-dependent mesh size
▶ Decreasing the order of the shape functions (and increasing the mesh size locally where required).
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Conclusions

In this presentation we showed and derived the Sequentially Linearized Navier Stokes (SLNS) model, and the way it
can be implemented in COMSOL.
We have verified the correct implementation in COMSOL, and have showed that it is able to reach significant speedups
for practical computations in micro-acoustics.
Want to know more?

▶ E: j.a.dejong@ascee.nl
▶ T: +31 6 189 71 622
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